

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH

S. Sethu Ramalingam ^{*1}, I. Keerthi Asir² and S. Athisayanathan³

*1,2 & 3Department of Mathematics, St. Xavier's College, Palayamkottai-627002, Tamil Nadu, India

ABSTRACT

For any vertex x in a connected graph G of order $n \ge 2$, a set $S_x \subseteq V$ is called a x-triangle free detour set of G if every vertex v of G lies on a x - y triangle free detour for some vertex y in S_x . The x-triangle free detour number $dn_{\Delta f_x}(G)$ of G is the minimum order of a x-triangle free detour sets and any x-triangle free detour sets of order $dn_{\Delta f_x}(G)$ is called a $dn_{\Delta f_x}$ -set of G. Let S_x be a $dn_{\Delta f_x}$ -set of G. A subset $T_x \subseteq S_x$ is called an x-forcing subset for S_x if S_x is the unique $dn_{\Delta f_x}$ -set containing T_x . An x-forcing subset for S_x of minimum order is a minimum x-forcing subset of S_x . The forcing x-triangle free detour number of S_x , denoted by $fdn_{\Delta f_x}(S_x)$, is the order of a minimum x-forcing subset for S_x . The forcing x-triangle free detour number of G is $fdn_{\Delta f_x}(G) = \min \{fdn_{\Delta f_x}(S_x)\}$, where the minimum is taken over all $dn_{\Delta f_x}$ -sets S_x in G. We determine bounds for it and find the forcing vertex triangle free detour number of certain classes of graphs. It is shown that for every pair a, b of positive integers with $0 \le a \le b$ and $b \ge 2$, there exists a connected graph G such that $fdn_{\Delta f_x}(G) = a$ and $dn_{\Delta f_x}(G) = b$.

Keywords: triangle free detour path, vertex triangle free detour number, forcing vertex triangle free detour number

I. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected simple graph. For basic definitions and terminologies, we refer to Chartrand et al. [1]. The concept of triangle free detour distance was introduced by Keerthi Asir and Athisayanathan [2]. A path P is called a triangle free path if no three vertices of P induce a triangle. For vertices u and v in a connected graph G, the triangle free detour distance $D_{\Delta f}(u, v)$ is the length of a longest u - v triangle free path in G. A u - v path of length $D_{\Delta f}(u, v)$ is called a u - v triangle free detour. The concept of triangle free detour number was introduced by Sethu Ramalingam et al. [3]. A set $S \subseteq V$ is called triangle free detour number $dn_{\Delta f}(G)$ of G is the minimum order of its triangle free detour sets and any triangle free detour set of order $dn_{\Delta f}(G)$ is called a triangle free detour number was introduced by Sethu Ramalingam et al. [4]. For any vertex x in G, a set $S_x \subseteq V$ is called a x-triangle free detour set of G if every vertex v in G for some vertex y in S_x . The x-triangle free detour number $dn_{\Delta f_x}(G)$ of G is the minimum order of a x-triangle free detour sets and any x-triangle free detour number $dn_{\Delta f_x}(G)$ is called a $dn_{\Delta f_x}$ -set of G.

The following theorems will be used in the sequel.

Theorem 1.1[4] Let x be any vertex of a connected graph *G*.

- (i) Every extreme-vertex of G other than the vertex x (whether x is extreme-vertex or not) belong to every x -triangle free detour set.
- (ii) No cut vertex of G belongs to any $dn_{\Delta f_x}$ -set.

Theorem 1.2[4] Let *T* be a tree with *t* end-vertices. Then $dn_{\Delta f_x}(T) = t - 1$ or $dn_{\Delta f_x}(T) = t$ according to whether *x* is an end-vertex or not.

Theorem 1.3[4] Let *G* be the complete graph K_n of order *n*. For any vertex *x* in *G*, a set $S_x \subseteq V$ is a $dn_{\Delta f_x}$ -set of *G* if and only if S_x consists of any n - 1 vertices of *G* other than *x*.

ISSN 2348 - 8034 Impact Factor- 4.022

Theorem 1.4[4] Let *G* be an even cycle of order $n \ge 4$. For any vertex *x* in *G*, a set $S_x \subseteq V$ is a $dn_{\Delta f_x}$ -set of *G* if and only if S_x consists of exactly one vertex *u* of *G* which is adjacent to the vertex *x* or antipodal vertex of *x*.

Theorem 1.5[4] Let *G* be an odd cycle of order $n \ge 5$. For any vertex *x* in *G*, a set $S_x \subseteq V$ is a $dn_{\Delta f_x}$ -set of *G* if and only if S_x consists of exactly one vertex *u* of *G* which is adjacent to the vertex *x*.

Theorem 1.6[4] Let *G* be the complete bipartite graph $K_{n,m}(1 \le n \le m)$. For any vertex *x* in *G*, a set $S_x \subseteq V$ is a $dn_{\Delta f_x}$ -set of *G* if and only if S_x consists of exactly any one vertex of *G* other than *x*.

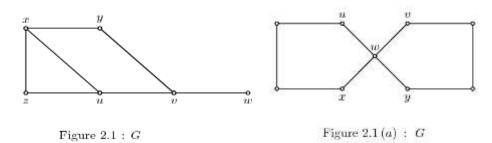
Theorem 1.7[4] Let *G* be a connected graph with cut-vertices and let S_x be an *x*-triangle free detour set of *G*. Then every branch at a vertex v of *G* contains an element of $S_x \cup \{x\}$.

Theorem 1.8[4] For any vertex x in a non-trivial connected graph G of order $n, 1 \le dn_{\Delta f_x}(G) \le n-1$.

II. FORCING VERTEX TRIANGLE FREE DETOUR NUMBER OF A GRAPH

Definition 2.1 Let x be any vertex of a connected graph G and let S_x be a $dn_{\Delta f_x}$ -set of G. A subset $T_x \subseteq S_x$ is called an x-forcing subset for S_x if S_x is the unique $dn_{\Delta f_x}$ -set containing T_x . An x-forcing subset for S_x of minimum order is a minimum x-forcing subset of S_x . The forcing x-triangle free detour number of S_x , denoted by $f dn_{\Delta f_x}(S_x)$, is the order of a minimum x -forcing subset for S_x . The forcing x-triangle free detour number of G is $f dn_{\Delta f_x}(G) = \min \{f dn_{\Delta f_x}(S_x)\}$, where the minimum is taken over all $dn_{\Delta f_x}$ -sets S_x in G.

Example 2.2 For the graph *G* given in Figure 2.1, the only $dn_{\Delta f_w}$ -sets are $\{z, u\}, \{z, y\}, \{z, x\}$ of *G* so that $f dn_{\Delta f_w}(G) = 1$. Also the unique $dn_{\Delta f_x}$ -set is $\{z, w\}$ so that $f dn_{\Delta f_x}(G) = 0$. For the graph *G* given in Figure 2.1(a), the only $dn_{\Delta f_w}$ -sets are $\{u, v\}, \{x, y\}, \{u, y\}, \{x, v\}$ of *G* so that $f dn_{\Delta f_w}(G) = 2$.



The following Theorem follows immediately from the definitions of vertex triangle free detour number and forcing vertex triangle free detour number of a connected graph G.

Theorem 2.3 For any vertex x in a connected graph G, $0 \le f dn_{\Delta f_x}(G) \le dn_{\Delta f_x}(G)$. Proof. Let x be any vertex of G. It is clear from the definition of $f dn_{\Delta f_x}(G)$ that $f dn_{\Delta f_x}(G) \ge 0$. Let S_x be any

 $dn_{\Delta f_x}$ -set of G. Since $fdn_{\Delta f_x}(G) = \min \{fdn_{\Delta f_x}(S_x)\}$, where the minimum is taken over all $dn_{\Delta f_x}$ -sets S_x in G, it follows that $fdn_{\Delta f_x}(G) \leq dn_{\Delta f_x}(G)$. Thus $0 < fdn_{\Delta f_x}(G) < dn_{\Delta f_x}(G)$.

Remark 2.4 The bounds in Theorem 2.3 are sharp. For the graph G given in Figure 2.1, $f dn_{\Delta f_w}(G) = dn_{\Delta f_w}(G) = 2$. For the graph G given in Figure 2.1(b), $S_{v_1} = \{v_6\}$ is a unique $dn_{\Delta f_{v_1}}$ -set of G so that $f dn_{\Delta f_{v_1}}(G) = 0$. Also, the inequalities in Theorem 2.3 can be strict. For the graph G, given in Figure 2.1, the sets $S_1 = \{w, u, z\}$, $S_2 = \{w, y, z\}$, $S_3 = \{w, x, z\}$ are a $dn_{\Delta f_v}$ -sets of G so that $f dn_{\Delta f_v}(G) = 1$ and $dn_{\Delta f_v}(G) = 3$. Thus $0 \le f dn_{\Delta f_x}(G) \le dn_{\Delta f_x}(G)$.

134

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 4.022

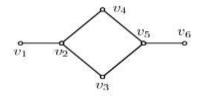


Figure 2.1(b) : G

In the following theorem we characterize graphs *G* for which the bounds in Theorem 2.3 are attained and also graphs for which $f dn_{\Delta f_r}(G) = 1$.

Theorem 2.5 Let *x* be any vertex of a connected graph *G*. Then

- (a) $f dn_{\Delta f_x}(G) = 0$ if and only if G has a unique $dn_{\Delta f_x}$ -set,
- (b) $f dn_{\Delta f_x}(G) = 1$ if and only if G has at least two $dn_{\Delta f_x}$ -sets, one of which is a unique $dn_{\Delta f_x}$ -set containing one of its elements, and
- (c) $f dn_{\Delta f_x}(G) = dn_{\Delta f_x}(G)$ if and only if no $dn_{\Delta f_x}$ -set of G is the unique $dn_{\Delta f_x}$ -set containing any of its proper subsets.

Proof. (a) Let $f dn_{\Delta f_x}(G) = 0$. Then, by definition, $f dn_{\Delta f_x}(S_x) = 0$ for some $dn_{\Delta f_x}$ -set, S_x so that empty set φ is the minimum *x*-forcing subset for S_x . Since the empty set φ is a subset of every set, it follows that S_x is the unique $dn_{\Delta f_x}$ -set of *G*. The converse is clear.

(b) Let $f dn_{\Delta f_x}(G) = 1$. Then by (a), G has at least two $dn_{\Delta f_x}$ -sets. Also, since $f dn_{\Delta f_x}(G) = 1$, there is a singleton subset T of a $dn_{\Delta f_x}$ -set S_x of G such that T is not a subset of any other $dn_{\Delta f_x}$ -set of G. Thus S_x is the unique $dn_{\Delta f_x}$ -set containing one of its elements. The converse is clear.

(c) Let $f dn_{\Delta f_x}(G) = dn_{\Delta f_x}(G)$. Then $f dn_{\Delta f_x}(S_x) = dn_{\Delta f_x}(G)$ for every $dn_{\Delta f_x}$ -set S_x in G. Also by Theorem 1.8, $dn_{\Delta f_x}(G) \ge 1$ and hence $f dn_{\Delta f_x}(G) \ge 1$. Then by (a), G has at least two $dn_{\Delta f_x}$ -sets and so the empty set φ is not a x-forcing subset of any $dn_{\Delta f_x}$ -set of G. Since $f dn_{\Delta f_x}(S_x) = dn_{\Delta f_x}(G)$, no proper subset of S_x is an x-forcing subset of S_x . Thus no $dn_{\Delta f_x}$ -set of G is the unique $dn_{\Delta f_x}$ -set containing any of its proper subsets.

Conversely the data implies that G contains more than one $dn_{\Delta f_x}$ -set and no subset of any $dn_{\Delta f_x}$ -set S_x other than S_x is an x-forcing subset for S_x . Hence it follows that $f dn_{\Delta f_x}(G) = dn_{\Delta f_x}(G)$.

Definition 2.6 A vertex v of a connected graph G is said to be a x-triangle free detour vertex of G if v belongs to every minimum x-triangle free detour set of G.

We observe that if G has a unique $dn_{\Delta f_x}$ -set S_x , then every vertex in S_x is an x -triangle free detour vertex.

Example 2.7 By Theorem 1.1(i), every extreme-vertex $v \neq x$ of any graph *G* is an *x*-triangle free detour vertex. On the other hand, there are *x*-triangle free detour vertices in a graph that are not end-vertices. For the graph *G* given in Figure 2.2, it is easily seen that $\{s\}$ is the unique minimum *x*-triangle free detour set of *G* so that the vertex *s* is the *x*-triangle free detour vertex of *G* but *s* is not an end-vertex of *G*.

ISSN 2348 - 8034 Impact Factor- 4.022

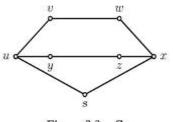


Figure 2.2 : G

Theorem 2.8 Let *x* be any vertex of a connected graph *G* and let *F* be the set of relative complements of the minimum *x*-forcing subsets in their respective minimum *x* -triangle free detour sets in *G*. Then $\bigcap_{F \in F} F$ is the set of *x*-triangle free detour vertices of *G*.

Proof. Let *W* be the set of *x*-triangle free detour vertices of *G*. We claim that $W = \bigcap_{F \in F} F$. Let $v \in W$. Then *v* is an *x*-triangle free detour vertex of *G* so that *v* belongs to every minimum *x*-triangle free detour set S_x of *G*. Let $T \subseteq S_x$ be any minimum *x*-forcing subset for any minimum *x*-triangle free detour set S_x of *G*. We claim that $v \notin T$. If $v \in T$, then $T' = T - \{v\}$ is a proper subset of *T* such that S_x is the unique $dn_{\Delta f_x}$ -set containing *T'* so that *T'* is an *x*-forcing subset for S_x with |T'| < |T|, which is a contradiction to *T* a minimum *x*-forcing subset for S_x . Thus $v \notin T$ and so $v \in F$, where *F* is the relative complement of *T* in S_x . Hence $v \in \bigcap_{F \in F} F$ so that $W \subseteq \bigcap_{F \in F} F$.

Conversely, let $v \in \bigcap_{F \in F} F$. Then v belongs to the relative complement of T in S_x for every T and every S_x such that $T \subseteq S_x$, where T is a minimum x-forcing subset for S_x . Since F is the relative complement of T in S_x , $F \subseteq S_x$ and so $v \in S_x$ for every S_x so that v is an x-triangle free detour vertex of G. Thus $v \in W$ and so $\bigcap_{F \in F} F \subseteq W$. Hence $W = \bigcap_{F \in F} F$.

Theorem 2.9 Let x be any vertex of a connected graph G and let S_x be any $dn_{\Delta f_x}$ -set of G.

- (i) No cut vertex of G belongs to any minimum x-forcing subset of S_x .
- (ii) No x-triangle free detour vertex of G belongs to any minimum x-forcing subset of S_x .

Proof. Let x be any vertex of a connected graph G and let S_x be any minimum x-triangle free detour set of G.

- (i) Since any minimum x-forcing subset of S_x is a subset of S_x , the result follows from Theorem 1.1 (ii).
- (ii) The proof is contained in the proof of the first part of Theorem 2.8.

Corollary 2.10 Let x be any vertex of a connected graph G. If G contains k end-vertices, then $f dn_{\Delta f_x}(G) \leq dn_{\Delta f_x}(G) - k + 1$.

Proof. This follows from Theorem 1.1(i) and Theorem 2.9(ii).

Remark 2.11 The bounds in Corollary 2.10 are sharp. For a tree *T* with *k* end-vertices, $f dn_{\Delta f_x}(T) = dn_{\Delta f_x}(T) - k + 1$ for any end-vertex *x* in *T*.

Theorem 2.12 Let *G* be a connected graph of order *n*.

- (a) If G is a tree with t end-vertices, then $f dn_{\Delta f_x}(G) = 0$ for every vertex x in T.
- (b) If G is the complete bipartite graph $K_{n,m}$, then $f dn_{\Delta f_x}(G) = 1$ for every vertex x in G.
- (c) If G is the complete graph K_n , then $f dn_{\Delta f_x}(G) = 0$ for every vertex x in G.
- (d) If G is the cycle $C_n(n \ge 4)$, then $f dn_{\Delta f_x}(G) = 1$ for every vertex x in G.

Proof. (a) By Theorem 1.2, $dn_{\Delta f_x}(G) = t - 1$ or $dn_{\Delta f_x}(G) = t$ according to whether x is an end-vertex or not. Since the set of all end-vertices of a tree is the unique $dn_{\Delta f_x}$ -set, the result follows from Theorem 2.5(a).

ISSN 2348 - 8034 Impact Factor- 4.022

(b) By Theorem 1.6, a set S_x consists of exactly any one vertex of G For the vertex v in G there are two or more vertices adjacent with v. Thus the vertex v belongs to x-triangle free detour basis of G. Thus the result follows.

(c) By Theorem 1.3, a set S_x consists of any n-1 vertices of G. Also the set of all n-1 vertices of G is the unique unique $dn_{\Delta f_x}$ -set, the result follows from Theorem 2.5.

(d) By Therem 1.4 or 1.5 (according as G is even or odd), a set S_x consists of one vertex which is adjacent to x or antipodal vertex of x. For each vertex v in G there are two vertices adjacent with v. Thus the vertex v belongs to exactly one $dn_{\Delta f_x}$ -set of G. Hence it follows that a set consisting of a single vertex is a forcing subset for any $dn_{\Delta f_x}$ -set of G. Thus the result follows.

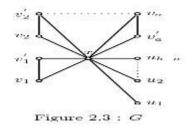
The following theorem gives a realization result.

Theorem 2.13 For each pair *a*, *b* of integers with $0 \le a < b$ and $b \ge 2$, there exists a connected graph *G* such that $f dn_{\Delta f_x}(G) = a$ and $dn_{\Delta f_x}(G) = b$ for some vertex *x* in *G*.

Proof. We consider two cases, according to whether a = 0 or $a \ge 1$.

Case 1. Let a = 0. Let G be any tree with b + 1 end vertices. Then for any end vertex x in G, $f dn_{\Delta f_x}(G) = 0$ by Theorem 2.9(i) and by Theorem 2.5(a).

Case 2. Let $a \ge 1$. For each integer *i* with $1 \le i \le a$, let F_i be a copy of K_2 , where v_i and v'_i are the vertices of F_i . Let $K_{1,b-2a}$ be the star at *x* and let $U = \{u_1, u_2, ..., u_{b-2a}\}$ be the set of end vertices of $K_{1,b-2a}$. Let *G* be the graph obtained by joining the vertex *x* with the vertices of $F_1, F_2, ..., F_a$. The graph *G* is shown in Figure 2.3.



First, we show that $dn_{\Delta f_x}(G) = b$ for some vertex x in G. By Theorem 1.1 and Theorem 1.7, every $dn_{\Delta f_x}$ -set of G contains U and every vertex from each $F_i(1 \le i \le a)$. Thus $dn_{\Delta f_x}(G) \ge (b - 2a) + 2a = b$. Let $S_x = U \cup \{v_1, v_2, ..., v_a\}$. It is clear that S_x is an $dn_{\Delta f_x}$ -set of G and so $dn_{\Delta f_x}(G) \ge |S_x| = (b - 2a) + 2a = b$. Thus $dn_{\Delta f_x}(G) = b$. Next we show that $fdn_{\Delta f_x}(G) = a$. Since $fdn_{\Delta f_x}(G) = b$, we observe that every $dn_{\Delta f_x}$ -set of G contains U and exactly one vertex from each $F_i(1 \le i \le a)$. Let $T \subseteq S_x$ be any minimum x-forcing subset of S_x . Then $T \subseteq S_x - U$, by Theorem 2.9 (ii) and so $|T| \le a$. If |T| < a, then there is a vertex v_i of $F_i(1 \le i \le a \text{ such that } v_i \in S_x \text{ and } v_i \notin T$. Let v'_i be the other vertex of F_i . Then $S'_x = (S_x - v_i) \cup v'_i$ is a $dn_{\Delta f_x}$ -set of G different from S_x such that it contains T, which is a contradiction to T is a minimum x-forcing subset of S_x . Thus $fdn_{\Delta f_x}(G) = a$.

REFERENCES

- 1. G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGraw-Hill, New Delhi, 2006.
- 2. I. Keerthi Asir and S. Athisayanathan, Triangle Free Detour Distance in Graphs, J. Combin. Math. Combin. Comput. (Accepted).
- 3. S. Sethu Ramalingam, I. Keerthi Asir and S. Athisayanathan, Triangle Free Detour Number of a Graph, (communicated).
- 4. S. Sethu Ramalingam, I. Keerthi Asir and S. Athisayanathan, Vertex Triangle Free Detour Number of a Graph, Mapana J Sci, 15, 3(2016), 9 24

(C)Global Journal Of Engineering Science And Researches